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ordinary differential equations not possessing Lie point
symmetries
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Africa
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Abstract. We consider the solution of a class of second-order ordinary differential equations
not possessing Lie point symmetries by group theoretic means. The method involves increasing
the order of these equations using homogeneity symmetry. The solution of this new third-order
equation is then sought in the instances that it and the new reduced second-order equation possess
additional symmetries. As a result the number of second-order equations solvable by the Lie
theory of extended groups is increased.

1. Introduction

In Lie’s development of the theory of the application of transformation groups [1–3] to
differential equations [4] he strove to provide a unified treatment of the methods of their
solution which up until then had been very muchad hoc. While Lie embraced the concept
of the unification of methods, his classical theory does not, unfortunately, apply to all
equations. In some instances the group approach fails where elementary methods succeed.
In this paper, as in our recent work on nonlocal symmetries [5], we wish to extend and
supplement Lie’s results by increasing the number and variety of second-order ordinary
differential equations for which a solution is possible, we will do this by group theoretic
means.

The inspiration for what we report here is the solution of the equation

z′′ = z′2

z
+ a(x)zz′ + a′(x)z2 (1.1)

which was considered by González-Gasćon and Gonźales-Ĺopez [6], Vawda [7] and
Abraham-Shrauneret al [8]. We use the latter’s method since it provides a simple instance
of the theory to be elaborated below.

The order of (1.1) is increased by the generalized Riccati transformation

z = − w
′

aw
(1.2)

and it becomes

w′w′′′ − w′′2−
(
a′

a

)′
w′2 = 0. (1.3)

† Member of the Centre for Theoretical and Computational Chemistry, University of Natal, Durban, and associate
member of the Centre for Nonlinear Studies, University of the Witwatersrand, Johannesburg.

0305-4470/97/062055+14$19.50c© 1997 IOP Publishing Ltd 2055



2056 K S Govinder and P G L Leach

Equation (1.3) has only the two obvious Lie point symmetries

G1 = ∂

∂w
G2 = w ∂

∂w
(1.4)

(confirmed using LIE [9]). Transformation (1.2) corresponds to the use ofG2 to reduce the
third-order equation (1.3), to the second-order equation (1.1). The symmetry,G1, is lost
(as a point symmetry) in this reduction sinceG2 is the nonnormal subgroup [10, p 148]. If
we useG1 to reduce the order of (1.3), the transformation

W = log
w′

a
X = x (1.5)

leads to

d2W

dX2
= 0 (1.6)

which not only is easy to solve but also possesses eight Lie point symmetries [4, p 404].
The solution to the original equation follows a reversal of the several transformations.

This example contains the essence of the method which is to be developed in generality
in this paper. The central principle is to increase the order of a differential equation by
a transformation which produces a point symmetry in the higher-order equation. Thus,
transformation (1.2) automatically makesG2 a symmetry of (1.3). AsG2 is not a ‘good’
symmetry to use to reduce the order, there is the possibility that the third-order equation
has the symmetryG1 as well.

The use of the generalized Riccati transformation (1.2) is motivated by its success in
transforming the first-order nonlinear generalized Riccati equation [11, p 23]

y ′ + a(x)+ b(x)y + c(x)y2 = 0 (1.7)

to the second-order linear equation

z′′ +
(
b − c

′

c

)
z′ + acz = 0 (1.8)

via

y(x) = z′(x)
c(x)z(x)

(1.9)

without a knowledge of the solution to (1.8). Transformation (1.9) is associated with the
homogeneity symmetry,G2, for which appropriate variables are found from the solution of
the associated Lagrange’s system

dx

0
= dw

w
= dw′

w′
. (1.10)

The invariants of (1.10) are

u = x v = w′

w
(1.11)

and so suitable new variables are

X = F
(
x,
w′

w

)
W = G

(
x,
w′

w

)
(1.12)

whereF andG are independent functions. In the example used such generality was not
necessary.

The constraint placed on the original second-order equation is that the third-order
equation has two symmetries so that there is an alternate route to reduce the third-order



A group theoretic approach to differential equations 2057

equation to second order. The aim of the present study is to determine which types of
this class of new second-order equations will lead to solvable examples of the original
second-order equation which are not trivially solvable. The best approach is to start with a
third-order equation which is required to have two Lie point symmetries and that one of them
persists in the second-order equation obtained by reduction using the normal subgroup. (We
believe that the second-order equation we are interested in was obtained by the reduction
of this third-order equation via the nonnormal subgroup and so will not have any Lie point
symmetries.) As the existence of one point symmetry is not sufficient for integrability
of the new second-order equation we determine those which have two point symmetries
according to the classification of two-dimensional algebras by Lie [4, p 412]. Note that the
existence of two point symmetries at the second-order level does not imply the existence
of three point symmetries at the third-order level. The second symmetrycould be a type II
hidden symmetry [12]. Although the two-dimensional algebra is sufficient for integrability
we provide a listing of the second-order equations with three and eight point symmetries
which fit into our scheme. For all of these we give the representative second-order equation
with no point symmetries from which the process commences. These will comprise the
new classes of second-order equations solvable by the Lie method even though they do not
possess Lie point symmetries.

2. General form of the third-order equation

We require that the third-order equation is invariant under the action of a two-dimensional
algebra and that, due to the origin of the equation, one of the symmetries is the homogeneity
symmetry

G2 = y ∂
∂y
. (2.1)

There are four two-dimensional transitive Lie algebras of vector fields in<2 [4, p 412]. We
are not interested in the two Abelian algebras

type I G1 = ∂

∂X
G2 = ∂

∂Y
[G1,G2] = 0

type II G1 = ∂

∂Y
] G2 = X ∂

∂Y
[G1,G2] = 0

(2.2)

since both elements are normal subgroups and reduction by one does not mean the loss of
the other as a point symmetry of the reduced equation [10, p 148]. In our approach the
original second-order equation can be imagined as coming from the third-order equation as
a result of reduction usingG2 (in (2.1)). The other symmetry is lost becauseG2 is not the
normal subgroup. Our method then utilizes the normal subgroup to reduce the third-order
equation to another second-order equation. This equation will inheritG2. To solve the new
second-order equation we seek those equations which admit a second Lie point symmetry.
This procedure imposes the minimum constraint on the third-order equation. We do not
require that it has a third point symmetry, only that it has a nonlocal symmetry which
becomes point symmetry in the variables of the reduced equation.

The two solvable algebras (types III and IV of Lie’s classification [4, p 425]) have the
canonical forms

type III G1 = ∂

∂Y
G2 = X ∂

∂X
+ Y ∂

∂Y
[G1,G2] = G1

type IV G1 = ∂

∂Y
G2 = Y ∂

∂Y
[G1,G2] = G1.

(2.3)
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We shall determine the class of third-order equations invariant under each canonical
realization and then transform the nonnormal subgroup to the desired form ofG2, namely
(2.1). In an attempt to avoid confusion we use the subscripts ‘2’ and ‘3’ to denote the two-
dimensional Lie algebras associated with the second- and third-order equations respectively.

We recall that the third-order ordinary differential equation (in solved form)

y ′′′ = f (x, y, y ′, y ′′) (2.4)

possesses a Lie point symmetry,

G = ξ(x, y) ∂
∂x
+ η(x, y) ∂

∂y
(2.5)

if

G[3](y ′′′ − f )|(y′′′−f )=0
= 0 (2.6)

where

G[3] = G+ (η′ − y ′ξ ′) ∂
∂y ′
+ (η′′ − 2y ′′ξ ′ − y ′ξ ′′) ∂

∂y ′′

+(η′′′ − 3y ′′′ξ ′ − 3y ′′ξ ′′ − y ′ξ ′′′) ∂

∂y ′′′
. (2.7)

It is also possible to use (2.5) to determine those functions,f , for which (2.4) possesses the
symmetry (2.5) by calculating the invariants of the symmetry. We consider each canonical
realization in turn.

2.1. Type III3

We begin with type III3 two-dimensional algebra in (2.3). It is evident that the form of
(2.4) invariant underG1 is

Y ′′′ = f (X, Y ′, Y ′′). (2.8)

UnderG2 the function,f , satisfies the first-order linear partial differential equation

X
∂f

∂X
− Y ′′ ∂f

∂Y ′′
= −2f (2.9)

with associated Lagrange’s system

dX

X
= dY ′

0
= dY ′′

−Y ′′ =
df

−2f
. (2.10)

The characteristics are

u = XY ′′
v = Y ′

w = f

Y ′′2

(2.11)

and (2.8) becomes

Y ′′′ = Y ′′2f (Y ′, XY ′′). (2.12)

Under the transformation

x = F(X, Y ) y = G(X, Y ) (2.13)
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G2 takes the required form (2.1) if

F = A
(
Y

X

)
G = YB

(
Y

X

)
(2.14)

whereA andB are arbitrary functions of their arguments. The structure of transformation
(2.14) suggests a happy simplification. If we takeA to be the identity andB to be one over
the identity, transformation (2.14) is

x = Y

X
y = X (2.15)

which represents all classes of equations up to the transformation

x −→ a(x) y −→ yb(x). (2.16)

Under transformation (2.15), (2.12) becomes

y ′′′ = 3y ′′
(
yy ′′ − y ′2
yy ′

)
− y

(
yy ′′ − 2y ′2

yy ′

)2

f

[
xy ′ + y
y ′

,− y
2

y ′2

(
yy ′′ − 2y ′2

yy ′

)]
(2.17)

or, equivalently,

y ′′′ = 3y ′′
(
yy ′′ − y ′2
yy ′

)
− y

′4

y3
f

[
xy ′ + y
y ′

,− y
2

y ′2

(
yy ′′ − 2y ′2

yy ′

)]
. (2.18)

The symmetryG1 is now

G1 = 1

y

∂

∂x
. (2.19)

2.2. Type IV3

In a similar manner we find the third-order equation invariant under the canonical
representation of type IV3 algebra in (2.3), namely

Y ′′′ = Y ′′f
(
X,
Y ′′

Y ′

)
. (2.20)

AsG2 is in the desired form, the only admissible transformations are those which transform
it to itself. These are of the class (2.16). Hence, up to this equivalence class the normal
form of the equation is

y ′′′ = y ′′f
(
x,
y ′′

y ′

)
(2.21)

and

G1 = ∂

∂y
. (2.22)

While both (2.12) and (2.21) are given in [13] we present the above detail to aid the reader
in applying the method to equations other than second order.
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3. The reduced second order equation: type III3 Lie algebra

We first consider the reduction of the third-order equation invariant under type III3 two-
dimensional Lie algebra, namely (2.18). The transformation which the symmetry (2.19)
naturally suggests is

u = y v = x + y

y ′
(3.1)

which reduces (2.18) to the second-order equation

u2v′′ = f (v, uv′). (3.2)

The symmetry is

G = u ∂
∂u
. (3.3)

Neither equation nor symmetry are in the most suitable form. We make the further
transformation

U = v V = logu g(U, V ′) = −V ′3f
(
U,

1

V ′

)
− V ′2 (3.4)

and obtain

d2V

dU2
= g(U, V ′) (3.5)

which has the symmetry

G = ∂

∂V
(3.6)

so that we can make a direct comparison with the four types of equations with two
symmetries (cf table 1 withU ↔ u and V ↔ v). equations invariant under the type
I2 algebra must haveg free of U which means that (2.18) is autonomous and so has the
extra symmetry∂/∂x which is not lost under the reduction of order usingy∂/∂y. Hence,
the original second-order equation has one symmetry and is not within the class considered
here.

For (3.5) to be invariant under type II2 it must be free ofV ′ which means that

f

(
U,

1

V ′

)
= −F(U)+ V

′2

V ′3
. (3.7)

Table 1. Canonical forms ofv′′ = g(u, v′) admitting two Lie point symmetries.

Canonical forms Form of
Type [G1,G2] of G1 andG2 equation

I2 0 G1 = ∂
∂u

v′′ = F(v′)
G2 = ∂

∂v

II 2 0 G1 = ∂
∂v

v′′ = F(u)
G2 = u ∂

∂v

III 2 G1 G1 = ∂
∂v

uv′′ = F(v′)
G2 = u ∂

∂u
+ v ∂

∂v

IV 2 G1 G1 = ∂
∂v

v′′ = v′F(u)
G2 = v ∂

∂v
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The third-order equation takes the form

y ′′′ = 3y ′′
(
y ′′

y ′
− y

′

y

)
+ y

′3

y2

(
2− yy

′′

y ′2

)
+ y ′

(
2− yy

′′

y ′2

)3

F

(
x + y

y ′

)
. (3.8)

Equation (3.8) has just two point symmetries and so the original second-order equation
obtained by means of the Riccati transformation

z = x w = y ′

y
(3.9)

namely

w′′ = 3w′2

w
− ww′ + w

(
1− w′

w2

)3

F

(
z + 1

w

)
(3.10)

has no symmetry for nontrivialF .
In the case of type III2 algebra the function in (3.5) has a very specificU dependence

[14], namely

g(U, V ′) = 1

U
F(V ′) (3.11)

and so

f

(
U,

1

V ′

)
= − 1

V ′3

(
1

U
F(V ′)+ V ′2

)
(3.12)

f (v, uv′) = −(uv′)3
(

1

v
F

(
1

uv′

)
+ 1

(uv′)2

)
. (3.13)

The third-order equation is

y ′′′ = 3y ′′
(
y ′′

y ′
− y

′

y

)
+ y ′

y2
(2y ′2− yy ′′)+ (2y

′2− yy ′′)3
y ′4(xy ′ + y) F

(
y ′3

y(2y ′2− yy ′′)
)

(3.14)

and the original second-order equation (via (3.9)) is

w′′ = 3w′2

w
− ww′ + w2− w′

w4(1+ zw)F
(

w3

w2− w′
)
. (3.15)

The third-order equation has just the two symmetries for generalF(V ′). There is a technical
difficulty with this case in that the integration of

UV ′′ = F(V ′) (3.16)

will give V ′ as an implicit function ofU . In principle this is not a problem, but there are
definitely going to be practical difficulties for an unspecifiedF(V ′). The solution to this
problem is addressed in part in section 5.1 where we consider the three-dimensional and
eight-dimensional symmetry cases for type III2 in both this and type IV3 realization.

Type IV2 is linear and the solution readily expressed as a quadrature. From (3.4)

f

(
U,

1

V ′

)
= −F(U)

V ′2
− 1

V ′
(3.17)

and the third-order equation is

y ′′′ = 3y ′′
(
y ′′

y ′
− y

′

y

)
+ y

′3

y2

(
2− yy

′′

y ′2

)
+ y

′2

y

(
2− yy

′′

y ′2

)2

F

(
x + y

y ′

)
. (3.18)
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The general dependence ofF on U which containsx means that for arbitraryF there is
not an additional symmetry and the original second-order equation

w′′ = 3w′2

w
− ww′ +

(
w′

w
− w

)2

F

(
z + 1

w

)
(3.19)

obtained by the Riccati reduction (3.9) will not have a point symmetry.

4. The reduced second-order equation: type IV3 Lie algebra

We now turn our attention to the third-order equation invariant under type IV3 two-
dimensional Lie algebra, namely (2.21). The standard transformation for the reduction
of the order of (2.21) with the symmetry (2.22) is to set

u = x v = y ′. (4.1)

However, the reduced equation is made a little simpler in appearance if the transformation

u = x v = logy ′ g(u, v′) = v′f (u, v′)− v′2 (4.2)

is used, as then (2.21) becomes

v′′ = g(u, v′). (4.3)

In the new coordinates,G2 becomes the symmetry

X1 = ∂

∂v
. (4.4)

It then becomes a very simple matter to read off the canonical forms of (4.3) under the
four algebras of two dimensions since the symmetry (4.4) appears in each one of them. We
summarize these algebras in table 1.

For type I2 the canonical form hasg independent ofu and (2.21) has the additional
symmetry

G3 = ∂

∂x
(4.5)

which has zero Lie bracket withG2. Hence the original second-order equation has at least
one symmetry and is not of the class sought. For type II2

f (u, v′) = F(u)

v′
+ v′ (4.6)

and (2.21) has the form

y ′′′ = y ′
{(

y ′′

y ′

)2

+ F(x)
}
. (4.7)

For generalF(x) (4.7) has no additional symmetry. Type II2 canonical form has eight
symmetries and is integrable by quadrature. Hence, the solution of the original second-
order equation derived from (4.7) by reduction using (3.9), namely

w′′ = w′2

w
− ww′ + wF(z) (4.8)

is always integrable. Any equation related to (4.8) by an invertible point transformation is
also integrable. In fact, if we set

w = a(Z)W z = −Z (4.9)
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we obtain (1.1).
For type III2 the actual solution to the equation requires an inversion after an integration.

It is best to look at the particular instances in which this is possible (see section 5.2). For
now we give the third-order equation, namely

y ′′′ = y ′
{

1

x
F

(
y ′′

y ′

)
+
(
y ′′

y ′

)2
}

(4.10)

and the original second-order equation via (3.9), namely

w′′ = w′2

w
− ww′ + w

z
F

(
w′

w
+ w

)
. (4.11)

In the case of a type IV2 equation the solution follows from a straightforward quadrature.
The third-order equation becomes

y ′′′ = y ′
[(

y ′′

y ′

)2

+ y
′′

y ′
F(x)

]
(4.12)

and for generalF(x) this has no other point symmetries thanG1 andG2. Reduction by the
Riccati transformation gives an integrable second-order equation, namely

w′′ = w′2

w
− ww′ + (w′ + w2)F (z) (4.13)

which has no point symmetries and is representive of a whole class of equations equivalent
to it under a point transformation.

5. The reduced second-order equation: type III2 Lie algebra

For both type III3 and type IV3 symmetries of the third-order equation we have seen that
suitable equations, i.e. ones without point symmetry, can lead via the increase in order
with the use of the Riccati transformation and the reduction via the normal subgroup to
equations which have either eight symmetries (types II2 and IV2) and are readily reduced
to quadratures or equations which have at least two point symmetries (type III2). As we
expect some difficulties in the integration of this equation, we will look at the special cases
of type III2 equations which have either three or eight symmetries.

The equations which have three symmetries are going to be either of type I2 or type III2
with some constraint due to the extra symmetry. As type I2 equations do not lead to the
case of the second-order equation not possessing symmetry, we need to consider only those
equations which belong to type III2. There are only four equivalence classes of equations
of type III2 [15] with three symmetries and we list them together with their symmetries in
table 2.

5.1. Type III3

We consider type III3 reduction first. (Note that the variables in table 2 are read the same
way as those for table 1 in section 3.) We recall that the third-order equation is (3.14),
namely

y ′′′ = 3y ′′
(
y ′′

y ′
− y

′

y

)
+ y ′

y2
(2y ′2− yy ′′)+ (2y

′2− yy ′′)3
y ′4(xy ′ + y) F

(
y ′3

y(2y ′2− yy ′′)
)

(5.1)

whereF(·) is one of the functions listed in table 2. The symmetryG1 in table 2 corresponds
to the symmetryG2 (in (2.1)) which is to be used to reduce the third-order equation to the
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Table 2. Equivalence classes of equations of type III2 with an additional symmetry. (In each
caseK 6= 0.)

Equation Symmetries Algebra

uv′′ = v′3 + v′ +K(1+ v′2)3/2 G1 = ∂

∂v
A3,8(s`(2, R))

G2 = u ∂
∂u
+ v ∂

∂v
[G1,G2] = G1

G3 = 2uv
∂

∂u
+ (v2 − u2)

∂

∂v
[G1,G3] = 2G2

[G2,G3] = G3

uv′′ = Kv′3 − 1
2v
′ G1 = ∂

∂v
A3,8(s`(2, R))

G2 = u ∂
∂u
+ v ∂

∂v
[G1,G2] = G1

G3 = 2uv
∂

∂u
+ v2 ∂

∂v
[G1,G3] = G2

[G2,G3] = G3

uv′′ = (a − 1)v′ +Kv′ 2a−1
a−1 G1 = ∂

∂v
Aa3,5

a 6= 0, 1
2 , 1, 2 G2 = u ∂

∂u
+ v ∂

∂v
[G1,G2] = G1

G3 = u1−a ∂
∂u

[G1,G3] = 0

[G2,G3] = (1− a)G3

uv′′ = 1+K exp(v′) G1 = ∂

∂v
A3,2

G2 = u ∂
∂u
+ v ∂

∂v
[G1,G2] = G1

G3 = ∂

∂u
+ logu

∂

∂v
[G1,G3] = 0

[G2,G3] = G1 −G3

second-order equation with no point symmetries. The Lie brackets show thatG2 in table 2
is a possible symmetry of the original equation in all cases sinceG1 is the normal subgroup
for the pair. However, unravelling the various transformations at the third-order level we
find that

G2 =
{
x + 1

y

∫
ydx

}
∂

∂x
+ y logy

∂

∂y
(5.2)

which is nonlocal and reduction viay∂/∂y leaves it that way. In the case of the two
representations ofs`(2, R) in table 2G3 is not possible as a point symmetry of the original
equation since [G1,G3] = G2. However, in the cases ofA3,2 andAa3,5 it must be considered.
In both cases the symmetry is nonlocal at the third order since forAa3,5

ξ = 1

y

∫
y ′
(
x + y

y ′

)1−a
dx η = 0 (5.3)

and forA3,2

ξ = 1− 1

y

∫ (
η − y

y ′
η′
)

dx η = y log

(
x + y

y ′

)
(5.4)

and the nonlocal property persists with they∂/∂y reduction. Thus, all four of the equivalence
classes of type III2 with additional symmetry do not produce a point symmetry in the original
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second-order equation. It is a simple matter to determine the original second-order equation
in all four cases. We use (3.15) withF replaced by the expressions on the right-hand side
of the equations in table 2 withv′ replaced by the argument ofF . The third-order equation
is obtained in a similar manner using (5.1).

5.2. Type IV3

The symmetryG2 of table 2 becomes nonlocal at the third order and is

G2 = x ∂
∂x
+
(
y +

∫
y ′ logy ′ dx

)
∂

∂y
. (5.5)

The nonlocal nature persists after reduction usingy∂/∂y. ForAa3,5

G3 = x1−a ∂
∂x
+
{
(1− a)yx−a + a(1− a)

∫
yx−a−1 dx

}
∂

∂y
(5.6)

at the third-order level and this remains nonlocal under reduction byy∂/∂y. ForA3,2

G3 = ∂

∂x
+
(
y logx −

∫
y

x
dx

)
∂

∂y
(5.7)

which also remains nonlocal when reduction viay∂/∂y is performed. (Recall thata 6= 0, 1
and so the integral in (5.6) is always present.)

Concern was expressed in section 3 as to the feasibility of type III2 equations because
of problems of inversion. All integrals for these four classes can be inverted. The original
second-order equation is (4.11) withF replaced by the expressions on the right-hand side
of the equations in table 2 withv′ replaced by the argument ofF . The third-order equation
is obtained in a similar manner via (4.10).

5.3. Linear equations

The final case to consider is when type III2 admits eight symmetries. The representative
equation is [15]

uv′′ = v′3+ v′ (5.8)

with the symmetries

G1 = ∂

∂v

G2 = u ∂
∂u
+ v ∂

∂v

G3 =
(
u+ v

2

u

)
∂

∂u

G4 = 1

u

∂

∂u

G5 = v3

u

∂

∂u
− 1

2
(u2+ 3v2)

∂

∂v

G6 =
(
v4

4u
− u

3

4

)
∂

∂u
− 1

2

(
vu2+ v3

) ∂
∂v

G7 = v

u

∂

∂u

G8 =
(
uv − v

3

u

)
∂

∂u
+ 2v2 ∂

∂v
.

(5.9)
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The Lie brackets withG1 are

[G1,G2] = G1 [G1,G3] = 2G7 [G1,G4] = 0

[G1,G5] = −3(G2−G3) [G1,G6] = G5 [G1,G7] = G4

[G1,G8] = 4G2− 3G3

(5.10)

and so possible candidates are justG2 andG4. However, we have already seen thatG2

does not lead to a point symmetry and so we need only considerG4. For type III3 equations
we find that at the third-order level

G4 = 1

y

∫
y ′2 dx

xy ′ + y
∂

∂x
(5.11)

and consequently is nonlocal under the reduction viay ∂
∂y

. The third-order equation is

y ′′′ = 3y ′′
(
y ′′

y ′
− y

′

y

)
+ y ′

y2
(2y ′2− yy ′′)

+ (2y
′2− yy ′′)3

y ′4(xy ′ + y)

[(
y ′3

y(2y ′2− yy ′′)
)3

+ y ′3

y(2y ′2− yy ′′)

]
(5.12)

and the original second-order equation is

w′′ = 3w′2

w
− ww′ + w2− w′

w4(1+ zw)

[(
w3

w2− w′
)3

+ w3

w2− w′
]
. (5.13)

For type IV3 equations we find thatG4 becomes

G4 = 1

x

∂

∂x
+
{
− y

x2
− 2

∫
y

x3
dx

}
∂

∂y
(5.14)

which remains nonlocal when the reduction viay ∂
∂y

is performed. The third-order equation
is

y ′′′ = y ′
{

1

x

[(
y ′′

y ′

)3

+ y
′′

y ′

]
+
(
y ′′

y ′

)2
}

(5.15)

and the orginal second-order equation is

w′′ = w′2

w
− ww′ + w

z

{(
w′ + w2

w

)3

+ w
′ + w2

w

}
. (5.16)

Hence, in all cases type III2 equations lead to no point symmetry in the original second-order
equation.

6. Discussion

The Lie method of extended groups is attractive in that it provides an algorithmic method
to solve differential equations. However, in the instances when the equations being studied
do not possesses Lie point (contact) symmetries the method is inapplicable. We have shown
that, by reversing the standard procedure, some progress can still be made. Due to their
proliferation in applications we have concentrated on second-order equations and presented
those which do not have Lie point symmetries yet are solvable using the Lie method. The
method appliesmutatis mutandisto higher-order equations.

In this work we have considered all two-dimensional algebras of symmetries. We have
thereby ignored the fact that the second-order equations invariant under types II2 and IV2 are
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linear and hence have eight Lie point symmetries. Thus, there exists a point transformation
to take the second-order equation invariant under type II2 to that invariant under type IV2.
This suggests a relationship between the original second-order equations not possessing Lie
point symmetries. In the case of (4.8) the transformation

w = W
∫
F(z) dz z =

∫
1∫
F(z)

dz (6.1)

yields (4.13) (withw in (4.13) replaced byW ). A similar result will hold for (3.10) and
(3.19).

We note that the solutions to equations (4.8) and (4.13) are easily obtained. Both
integrate trivially to a first integral that can be rewritten as a Riccati equation—this
integration is related to the presence of exponential nonlocal symmetries of the form [8]

G = exp

[ ∫
P(x, y)dx

](
ξ(x, y)

∂

∂x
+ η(x, y) ∂

∂y

)
. (6.2)

(Thus, the route to the linear second-order equation is obtainable by this elementary method
and that detailed earlier.) The reason we still consider the solution of these equations via
our method is to show that those equations which are solvable by elementary methods are
so because of the group theoretic basis. However, the practical usefulness of the approach
is evidenced by the solutions of (3.10), (3.15), (3.19) and (4.11) which are not obviously
integrable.

The work presented here opens up a number of new avenues. The first is the extension
to second-order equations possessing one Lie point symmetry. Here, one would require
that the third-order equations possess three Lie point symmetries and that reduction using
the third symmetry results in a new second-order equation with more than one symmetry.
A further aspect that would need to be investigated in this case is that of the original
second-order equation possessing, in addition to the one Lie point symmetry, a ‘useful’
nonlocal symmetry, i.e. a nonlocal symmetry that reduces to a new point symmetry under
the reduction of the second-order equation via the point symmetry [5]. In fact that option
can also be applied to the new second-order equations in this paper—it is not necessary for
these equations to possess two Lie point symmetries to be reducible to quadratures.

Another avenue of research is the possession of contact symmetries by the third-order
equation. As it has been shown [16] that contact symmetries can reduce to point symmetries,
this could result in new classes of third-order equations that reduce to second-order equations
which are solvable without the imposition of further restrictions, i.e. they may naturally
possess more than one Lie point symmetry.

Contact symmetries can also be considered for original second-order equations. While
there are technical difficulties associated with finding these contact symmetries (essentially
the equation has to be solved to obtain them), it is possible to assume that the second-order
equation has no Lie point symmetries but one contact symmetry of some specifc form.
Then an increase of order could lead to a third-order equation with more than one Lie point
symmetry etc.

From above it can be seen that the ideas presented here can be used successfully to
extend the number of solvable equations. They can also be used to explain the integration
of equations not possessing Lie point symmetries via group theory. It is worth noting that
we do not expect ‘fundamental equations’ such as the six Painlevé equations [17–19] to
be solvable using our method—these equations are ‘irreducible’ [11, p 345]. It is hoped
that these endeavours further enlarge the classes of equations solvable via the Lie method
and bring us closer to realizing Lie’s ideal of the solution of all differential equations in a
unified manner.
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